Filippo Tempia
Professore/Professoressa ordinario/a
- Dipartimento di Neuroscienze "Rita Levi Montalcini"
- SSD: BIO/09 - fisiologia
- ORCID: orcid.org/0000-0003-2778-0943
Contatti
- 0116708169
- 0116708174
- Chiama ftempia
- filippo.tempia@unito.it
- Studio:
Dipartimento di Neuroscienze, Sezione di Fisiologia
Corso Raffaello 30, 10125 TorinoLaboratorio:
Neuroscience Institute Cavalieri Ottolenghi (NICO)
Regione Gonzole 10, 10043 Orbassano (TO)
tel: 011-6706609 (studio); 011-6706645 (lab) - https://medchirurgia.campusnet.unito.it/persone/filippo.tempia
- VCard contatti
Presso
- Department of Neurosciences "Rita Levi Montalcini"
- Dipartimento di Neuroscienze "Rita Levi Montalcini"
- Biotechnology for Neuroscience
- Corso di Laurea in Biotecnologie
- Corso di Laurea Magistrale in Biotecnologie Mediche - Classe LM-9
- Laurea Magistrale in Medicina e Chirurgia - sede di Torino
- Master Program in Molecular Biotechnology
- MedInTO Medicine and Surgery
- Programma MD-PhD della Scuola di Medicina
Curriculum vitae
Insegnamenti
- APPLIED MICROSCOPY AND PHYSIOLOGY TECHNIQUES (BIO0194)
Corso di Laurea in Biotecnologie - Electrophysiological and molecular mechanisms of spino-cerebellar ataxias. Instructor prof Filippo Tempia
Programma MD-PhD della Scuola di Medicina - Fisiologia I (canale A) (SME0721B)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Fisiologia I (canale B) (SME0721B)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Fisiologia (canale A) (SME0721A)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Fisiologia (canale A) (SME0721)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Fisiologia (canale B) (SME0721A)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Fisiologia (canale B) (SME0721)
Laurea Magistrale in Medicina e Chirurgia - sede di Torino - Neurology (SCB0217)
MedInTO Medicine and Surgery - Neurology - Module of Physiology (SCB0217A)
MedInTO Medicine and Surgery - Neurophysiology (NEU0268A)
Biotechnology for Neuroscience - Neurophysiology and neuropharmacology (NEU0268)
Biotechnology for Neuroscience - PHYSIOLOGY - BIOCHEMISTRY (BIO0108 Pds 308-BIDD)
Master Program in Molecular Biotechnology - Physiological Basis of Human Body (SCB0203)
MedInTO Medicine and Surgery - Physiological Basis of Human Body - module of Physiological Basis of Human Body Mod. 1 (SCB0203A)
MedInTO Medicine and Surgery - Physiological techniques (BIO0194C)
Corso di Laurea in Biotecnologie - Physiology (BIO0108A Pds 308-BIDD)
Master Program in Molecular Biotechnology - Physiology of Systems (SCB0208)
MedInTO Medicine and Surgery - Space neurophysiology (NEU0281B)
Biotechnology for Neuroscience - Space neuroscience (NEU0281)
Biotechnology for Neuroscience - TIROCINIO di FISIOLOGIA (INT0558)
Corso di Laurea Magistrale in Biotecnologie Mediche - Classe LM-9
Temi di ricerca
-
Pathophysiology of genetic human spino-cerebellar ataxias
Main goal
The experiments of our laboratory are aimed at discovering the mechanisms responsible for some rare human spinocerebellar ataxias (SCA), for which at present no therapy is available. Our lab contributed to the discovery of SCA28 and of SCA38 and we are currently studying their pathogenic mechanisms. Recently we started to investigate also SCA27. The final goal of our research is to identify mechanisms the can be targeted by specific therapies.
Experimental models
SCA28
Our laboratory, in collaboration with Dr. Brusco (Genetics, Univ. of Torino), is studying the first animal model bearing the mutated AFG3L2 gene of a SCA28 patient. This research is financially supported by Telethon-Italy.
SCA38
In collaboration with Dr. Borroni (Neurology, Univ. of Brescia), Dr. Brusco (Genetics, Univ. of Torino) and Dr. Caruso (Biochemistry, Univ. of Milano) we are starting a new study aimed at finding the mechanisms responsible for cerebellar deficits and cell degeneration in SCA38. Our part of the research concerns an animal model of SCA38, the ELOVL5 knock out mouse, in collaboration with Dr. Horton and Dr. Moon of the University of Texas Southwestern Medical Center in Dallas (TX, USA). This research is financially supported by Telethon-Italy.
SCA27
In collaboration we Dr. Laezza of the University of Texas Medical Branch at Galveston (TX, USA) we are studying the alterations of cerebellar mechanims in an animal model of SCA27.
Projects
In both models of SCA28 and of SCA38 we are investigating motor symptoms, cell types affected by the disease, neurodegeneration of cerebellar neurons, functional deficits in synaptic transmission and in the generation of nerve impulses. In the model of SCA27 we are studying the synaptic deficits in the cerebellar cortex and the other symptoms correlated to neuropsychiatric disorders.
Publications on SCA28:
Sacco T, Boda E, Hoxha E, Pizzo R, Cagnoli C, Brusco A, Tempia F (2010) Mouse brain expression patterns of Spg7, Afg3l1, and transcripts, encoding the mitochondrial Afg3l2m-AAA protease. BMC Neuroscience 11:55 (doi: 10.1186/1471-2202-11-55).
Di Bella D, Lazzaro F, Brusco A, Plumari M, Battaglia G, Pastore A, Finardi A, Cagnoli C, Tempia F, Frontali M, Veneziano L, Sacco T, Boda E, Brussino A, Bonn F, Castellotti B, Baratta S, Mariotti C, Gellera C, Fracasso V, Magri S, Langer T, Plevani P, Di Donato S, Muzi-Falconi M, Taroni F. (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nature Genetics 42: 313-331 (doi:10.1038/ng.544).
Di Bella D, Lazzaro F, Brusco A, Battaglia G, Pastore A, Finardi A, Fracasso V, Plumari M, Cagnoli C, Tempia F, Brussino A, Gellera C, Mariotti C, Pievani P, Di Donato S, Langer T, Muzi-Falconi M, Taroni F (2008) AFG3L2 mutations cause autosomal dominant ataxia SCA28 and reveal an essential role of the m-AAA AGF3L2 homocomplex in the cerebellum. Presented at the annual meeting of The American Society of Human Genetics, November 14, 2008, Philadelphia, Pennsylvania; Abstract program number 216.
Di Bella D, Lazzaro F, Brusco A, Battaglia G, Pastore A, Finardi A, Fracasso V, Plumari M, Cagnoli C, Tempia F, Brussino A, Gellera C, Mariotti C, Plevani P, Di Donato S, Langer T, Muzi-Falconi M, Taroni F (2009) AFG3L2 mutations cause autosomal dominant ataxia SCA28 and reveal an essential role for the mitochondrial m-AAA protease complex in the cerebellum. Nineteenth Meeting of the European Neurological Society 20–24 June 2009, Milan, Italy. J Neurol 256 (Suppl 2): S53, Abstract O141.
Mancini C, Roncaglia P, Stevanin G, Durr A, Brussino A, Cagnoli C, Krmac H, Limongi T, Montarolo F, Hoxha E, Turco E, Messana E, Altruda F, Gustincich S, Tempia F, Brusco A (2011) Functional characterization of missense mutations in SCA28 patients, and development of a mouse model of the disease. XVI Scientific Convention Telethon, Riva del Garda, 7-9 marzo 2011. Abstract 118, p. 78.
E. Hoxha, C. Mancini, F. Montarolo, D. I. Gondor Morosini, V. Nicolò, A. Brusco, F. Tempia Functional alterations of the first Afg3l2 knockin mouse harboring a SCA28 mutation. 45th annual meeting of the Society for Neuroscience, Chicago, USA. Abstract.
Publications on SCA38:
Di Gregorio E, Borroni B, Giorgio E, Lacerenza D, Ferrero M, Lo Buono N, Ragusa N, Mancini C, Gaussen M, Calcia A, Mitro N, Hoxha E, Mura I, Coviello DA, Moon YA, Tesson C, Vaula G, Couarch P, Orsi L, Duregon E, Papotti MG, Deleuze JF, Imbert J, Costanzi C, Padovani A, Giunti P, Maillet-Vioud M, Durr A, Brice A,Tempia F, Funaro A, Boccone L, Caruso D, Stevanin G, Brusco A. (2014) ELOVL5 Mutations Cause Spinocerebellar Ataxia 38. Am J Hum Genet 95: 209-217. pii: S0002-9297(14)00310-3. doi: 10.1016/j.ajhg.2014.07.001.
Publications on SCA27:
Tempia F, Negro G, Alshammari MA, Alshammari TK, Laezza F (2014) Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. 44rd annual meeting of the Society for Neuroscience, Washington DC, USA. Abstract.
Tempia F, Hoxha E, Negro G, Alshammari MA, Alshammari TK, Panova-Elektronova N and Laezza F (2015) Parallel fiber to Purkinje cell synaptic impairment in a mouse model of spinocerebellar ataxia type 27. Front. Cell. Neurosci. 9:205. doi: http://dx.doi.org/10.3389/fncel.2015.00205
-
Animal models of neuropsychiatric diseases
Main goal
These lines of research are aimed at finding the cellular and molecular mechanisms of autism spectrum disorders (ASD), schizophrenia and mood disorders.
Experimental models
ASD
In a research led by the lab of Dr. Daniela Carulli (Neuroscience Institute Cavalieri Ottolenghi) we are studying a mouse model in which the PTEN gene (whose mutation is associated with ASD) was selectively knock out in cerebellar Purkinje cells.Schizophrenia
In collaboration with Dr. Laezza of the University of Texas Medical Branch at Galveston (TX, USA) we are studying the cognitive dysfunctions and the cerebral alterations of the Fgf14 knock out mouse, as a model of schizophrenia.
Mood disorders
The same animal model with schizophrenic traits (Fgf14 knock out mouse) also displays alterations of mood. We are involved in a large study on these aspects in collaboration with Dr. Laezza and Dr. Green of the University of Texas Medical Branch at Galveston (TX, USA) and with Dr. D'Ascenzo of the Catholic University of Rome (Italy).
Gruppi di ricerca
Attività in agenda
Organi
Ricevimento studenti
Previo appuntamento via e-mail